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ABSTRACT

In—this—paper fhe crack problem for a relatively thin layer bonded
to a very thick substrate under‘™thermal shock" conditions is considered.
The effect of surface cooling rate is studied by assuming the temperature
boundary condition to be a ramp function. Among the crack geometries
considered are the edge crack in the coating layer, the broken layer, the
edge crack going through the interface, the undercoat crack in the sub-
strate and the embedded crack crossing the interface. The primary calcu-
lated quantity is the stress intensity factor at various singular points
and the main variables are the relative sizes and locations of cracks,
the time, and the duration of the cooling ramp. The problem is solved
and rather extensive results are given for two material pairs, namely
a stainless steel layer welded on a ferritic medium and a ceramic coat-
ing on a steel substrate.

1. Introduction

A common failure mode in many structural components that consist of
a relatively thin coating and a substrate is the cracking of the coating,
the substrate, or both under transient thermal stresses. Cladded pres-
sure vessels under thermal shock, and certain microelectronic devices and
ceramic-coated metal parts under rapidly changing thermal environments
may be mentioned as some typical examples for such components. Very
often in transient thermal stress analysis it is assumed that the rele-
vant thermal boundary condition is a step change in temperature. In the
fracture analysis even though this assumption would lead to conservative
bounds for the stress intensity factors, in most cases it is not a real-
istic representation of the actual boundary conditions.

The broad aim of this study is to provide the solution needed for
assessing the crack propagation and arrest process in a coated medium

- rij¥¥
) This work was supported by nder the Gréﬁ?‘lSM—BGAIBGH and by
 NASA-Langley under the Grant NAG-1-713.
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containing a certain initial flaw and subjected to transient thermal
loading. In a simplified fracture analysis this requires the determina-
tion of the stress intensity factors as functions of time and dimensions
concerning the size and location of the crack. In order to study the
influence of the thermal boundary conditions on the fracture process, in
this study the rise time of the surface temperature is assumed to be an
additional variable in formulating the crack problem,

The crack problem is solved under the following simplifying assump-
tions: (i) the medium consists of two dissimilar linear isotropic homo-
geneous materials bonded along an ideal plane interface; (ii) the crack
lies in xz plane, the constraints in z direction are such that the prob-
lem may be treated as either a plane strain or a generalized plane stress
problem in xy plane, and the thermal boundary conditions are independent
of y; (iii) the thickness of the substrate is very large compared to that
of the coating, hence for small times the main features of the problem
may be recovered by approximating the medium by a layer bonded to an
elastic half space; (iv) all thermoelastic coupling effects and the tem-
perature dependence of thermoelastic coefficients are negligible; and
(v) the transient thevmal stress problem is quasistatic, that is the
inertia effects are negligible. The previous studies on dynamic thermo-
elasticity seem to bear out the validity of the last assumption (see,
for example [1] and [2]).

The thermal shock problem for hollow cylinders containing an axial
or a circumferential crack was considered in [3]-[5], where it was
assumed that the thermal boundary condition is a step function in tem-
perature. In [3] the axisymmetric circumferential crack problem was
analyzed for a homogeneous hollow cylinder. The same problem was studied
in [4] by assuming that the cylinder is homogeneous in elastic but non-
homogeneous in thermal properties, simulating the cladded pressure ves-
sels. In [5] the crack is assumed to be axial, that is, in the rz plane
and the coating is approximated by a "membrane" in the elasticity solu-
tion and is assumed to be a homogeneous continuum in solving the diffu-
sion problem.



2. Temperature Distribution

Consider the nonhomogeneous thermoelastic medium shown in Fig. 1la.
Assume that initially the medium is at a constant temperature T, and
starting at t=0 the temperature of the surface x=0 is (suddenly or
gradually) changed to T, and is held constant at T, for t>t, (Fig. 1b),
Defining

T-l‘(xat) - Te = e.i(xst) » i=1,2 , (])

the differential equations and the boundary conditions for the heat con-
duction problem may be expressed as(*)

7 o e (1T1,2) (2)
;
ei(x,O) = 0, (i=1,2) , : (3)
ae1(h,t) aez(h,t)
61(hst) = ez(h:t)a k'l. Tax = k2| ax (4)
92(°°9t) =0, (5)
e](o,t) = eoH(t) » 8y = Tg=Te » OF (6)
8
01(0,t) = £ [tH(t)-(t-t JH(t-t )] » e, = T =T, . (6a)

0

The solution of (2) subject to (3)-(6) may be obtained in a straightfor-
ward manner by using Laplace transforms (see, for example, [6],[7]).
Defining the dimensionless quantities

x' = x/h, 8= /D370, 5 n = Bky'/ky' 5 T = tD1/h2 . (7)

for the boundary condition (6) the temperature distributions in the two
materials are found to be

' ® -2
8 (x*,1) S gD_J e "5 sinx's

1
% ~ | STcosZsanzsinzsy 95 » Ox'<1 s (8)

(*) See the List of Symbols for notation
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6,(x",1) T ez
-317;———— = 1-%-['{e TS [cos s sing(x'=1)s
0 0

+ nsin scosg(x'-1)s]/[s(cos?s+n2sin?s)]}ds, I<x'<e . (9)

Similarly, if the temperature boundary condition at x=0 is given
by the ramp function shown by (6a), we obtain

8,(x",1) ® -182, .
"7 2 (1-e "~ )sinx's ds '
5 T T f s3{cosZstnZsinZs) > O<X'<ls O<tery (10)
[e]
2
0 (X' T) . -752 -TOS .
| R 2n e (e -1)sinx's .
eo ]-TTTO J SSWSTS'l'nZS'inZS) dS, O<x <1, T>To (11)

[¢]

]

, )
f {(1-e""5")[cos s sing(x'-1)s
[¢]

]

+ nsinscosg(x'~1)]1/[s3(cos2s+n2sinZs)]}ds, x'>1, O<t<t s
(12)
6 (X',T) ® 2 T 52
2 5 = -——2~—-f{e'TS (e © -1)[cos s sing(x'-1)s
T
(6] 0 o
+ nsinscosg(x'-1)s]/[s3(cos2s+n2sin?s)]}ds, x'>1, ST
(13)
where
- 2
o toD1/h . (14)

3. Thermal Stresses in the Uncracked Medium

In the uncracked medium subjected to thermal initial and boundary
conditions (3)-(6) x and t are the only independent variables, the medium
is unconstrained in x direction and is fully constrained in y and z

-4-



directions., For the thermal stresses we thus have

T ~ _ - - T _ 7T .
= 0, €5 ixy €1xz"€iyz"€iyy €427 0, oiyy-oizz, (i=1,2). (15)

From (15) it follows that

T i _ Ems(xt)
01y (Xot) = 01,,(Xst) = - Ty 0xchs 00, (16)
%9 Z(X,t) _
°2yy(x t) = 222(x t) = - -——1::5;———— s x>h, t>0 . (17)
By defining
E o460 tD
Z - ] ] 0 L é. = 1
% = 0 TRTTR (18)

the stresses may also be expressed in the following normalized form:

o, (x"yt)  aq(x',T)
1yy = , O<x'<1 , >0 , (19)
o 6
(o] o]
0; (x',7) E2u2(1-v]) ez(x',r)
= - (20)

s X'>]’ T>0 .
o, E]a](T;vz) B

(o]

4. The Crack Problem

Consider now the crack problem shown in Fig. 1a. Since the problem
is linear, one may consider the solutions due to thermal and mechanical
loads separately. One may also simplify the problem by considering the
stress state in the medium as the sum of two solutions. The first is
obtained by solving the problem for the uncracked medium under the pre-
scribed thermal and mechanical loads, and the second is found from the
cracked medium in which the equal and opposite of the stresses given by
the first solution acting on the crack surfaces are the only external
Toads. In this paper the primary interest is in the stress intensity
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factors due to transient thermal stresses. It is, therefore, sufficient
to consider the problem under the crack surface tractions given by (19)
and (20) (with the opposite signs).

The plane elasticity problem shown in Fig. 1 requires the solution

of the following equilibrium equations
2 2

» 2 Ty BTV :

(K_i-])v U.i + 2('5;2"*' BXBy) =0 s (1"192) s (2])
2 Pui |, 3% .

(Ki-])V vyt Z(BXay + ?S;r) =0, (i=1,2) , (22)

subject to

o1xx(0,y) =0, U]Xy(O,y) =0, O<y<o , (23)

U‘]xx(hs.Y) = OZXX(h"y) s G]Xy(hs.V) = szy(hsy) s 0<y<°° ’ (24)

u]x(hs.V) = Uz(h’y) s V](ha.Y) = Vz(hs)') s O<y<eo , (25)

U'Hj(xa.Y)_*o ° OZij(X’.Y)"O s (X2+.y2)“*°° s (iaj=x:.V) ’ (26)

c1xy(x,0) = 0, O<x<h; ozxy(x,O) = 0, h<X<eo , (27)

014y (%:0) = Py(X) = =0 (x:t) 5 ayexed; (282)

V1(X,0) =0, 0<x<a1, b]<x<h . (28b)

Oy (Xs0) = Pp(X) = = ol (x,8) , a,<x<b, , (298)

v2(x,0) = 0, h<x<a2 . b2<x<m, (29b)

where, in the usual notation Uy and Vi (k=1,2) are the x and y-
components of the displacement vector and 143 and 9952 (i,j=x,y) are
the stresses in materials 1 and 2, respectively. Note that y=0 is a
plane of symmetry and, hence, the problem is considered for y>0 only.
The stresses and displacements are related through
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Mg oY oy ,
Tixx T [es#1) o+ (3-¢y) 75;1 , (i=1,2) , (30)

Wy 3ui 3Vi .
Ty T T LG o+ (egt) 55 (31520 (1)
u; Vs _
ixy = “1(757 + j;() , (1=1,2) . (32)

The differential equations (21) and (22) are solved by expressing
u; and v,, (i=1,2) in terms of Fourier integrals [7],[8]. Thus, by
defining

61(x) = 2 v (x,30) 4 4p(x) = 2 vo(x,40) (33)

and by following the procedure described, for example, in [8], the prob-
Tem may be reduced to the following system of integral equations (see
[7] for details):

by b2
f [;—1_—)(— + kyp(x:8) o1 (s)ds + f kyo(X55)¢5(s)ds
a, a,
W(]+K])
= 4U] p1(x) s a]<X<b1 s (34)
b.l rbz
1
J kz](X,S)¢](S)dS + } [E:;‘+ kzz(xss)]¢2(5)d5
ay 2,
ﬂ(1+K2)
S E, Po(x) 4 ay<x<b, , (35)
subject to
51 b2
f ¢1(x)dx =0, J ¢2(x)dx =0 (36a,b)
a] az
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if 0<a1<b]<a2<b2<w, The kernels kij’ (i,j=1,2) are of the form

o

ks5(x55) = j 6;5(%:85a)da 5 (1,3=1,2) (37)
(o}
where the functions Gij are given in Appendix A.
To improve the accuracy in evaluating the integrals shown in (37)
and, most importantly, to examine the singular behavior of the solution

for cracks intersecting the interface or the boundary, (37) is rewritten

as
’ © { o
ki3 (00) = [ [6450005000-675(x,5,0) 1 + | 635(%,,0)da,
(o] (o]
(i,3=1,2) , (38)
where G:j is the asymptotic form of G].j for large values of o. In this

problem, after some lengthy but relatively straightforward analysis, it
may be shown that (see [8] and also [7] for details)

i5065) = ki 5005) + kj500s) 5 (1,371,2) (39)
f o - .

ki.j(X,S) = J [Gij(x,s,a)-Gij(X,S,u)]doc s (1’3"']’2) s (40)
$5068) = | 67500 s0a)da 5 (1,351,2) (a1)

o]
f
where the functions kij are bounded in the closed intervals [a],b1] and
[az,bz], including a1=0, b1=h, a2=h and the (singular) kernels k?j are
found to be

s _ sl s2
ki1 = K51 * Ky (42)
s1 _ 1 6x 4x2

I o LA G LI R A L )
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s2 _ 11 Crplh-x) q(h-x)®

K11 = [2hex=sT * T2hex=s)Z * [2hoxms)® @ (3q<(Xss)<bq) (44)
_ 3(m-1) ™27 _ e mel _ o e
N 7 Zmhey) T ZmeH T 2 12 T -6 ey > €13 4 ey 7
!
ms=-—, (45)
w2
d (x=h)
s _ 11 12
k12 = (g 7 (a]<x<b], a2<s<b2) R (46)
3(kq+1) kq+] kqtl  kqt]
d - 1 ] = .' - ] (47)
11 2(m+K]7’ 2(mK +1) ° Micy mK2+1 ?
d d,,{x=h)
S 2
k2.| = Xgl + %x—s)z . (a]<s<b], a2<x<b2), (48)
3m(K +1) m(K2+1) m(K2+1) m(K2+1)
d = Y d = - s (49)
(x=h) (x-h)?
s _ 21 2 3
Koo = Tsx-2hy * Tehoah)Z * Tsrcezn)s @ (ap<(xss)<by s (50)
MK =K
= .2 1 3(m-1) - m-1 _ g _M=1_
€1 2(mey) * 2me,#1) * C22 6 meA T e #T * C23 4 e, - (51)

We now observe that as long as the crack tips are away from the free
surface and the interface (i.e., for 37>0, by<h $nd a2>h), the kernels
k?j are bounded and may be treated, along with kij’ as Fredhoim kernels.
In this case the integral equations (34) and (35) have only an ordinary
Cauchy singularity and may be solved by using any one of the standard
techniques [9]. One may also note that in the 1imiting cases of an edge
crack (a =0), a crack terminating at the interface (b]=h or a2=h), or
the crack crossing the interface (a2 h=b ), if the var1ab1es x and s
approach the end points 0 or h together, then the kernels k (x s) become
unbounded and, consequently, would also contribute to the s1ngu1ar beha-
vior of the solution. Such kernels are defined as generalized Cauchy
kernels [9].
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5. Singularities of the Solution

To examine the singular Behavior of the solution of integral equa-
tions (34) and (35) we observe that (a) the left hand sides of (34) and
(35) represent the stress components c1yy(x,0) and ozyy(x,o) outside
as well as inside the cracks in materials 1 and 2, respectively, and
(b) the known functions Py and Pos defined inside the cracks, are bounded
but °1yy(x’p)’ (i=1,2) may be discontinuous and unbounded as x approaches
the crack tips from outside. With these observations the singular nature
of ¢ and ¢ and the stress state around the crack tips may be determined
by a systematic application of the function theoretic method to (34)
and (35). To do this we define the following sectionally holomorphic
functions of thg complex variable z=x+iy

5y (s)
1 ¢siS
Fj(z) - ?‘J g-z

ds , (J=132) s (52)
a.
J

and express the unknown functions ¢35 (j=1,2) as [10]

) 9;(s)
¢j(.3) = R (aj<5<bj) R

(s-a;) I(bs~s) )

0<RE(Yj,Bj)<]9 (j=],2) s (53)

where the unknown functions gj(s) are Holder-continuous in the closed
intervals aj§§§pj, (j=1,2) and are nonzero at the end points. Following
the asymptotic analysis given in [10], the leading terms in (52) may be

separated and Fj may be expressed as follows:

Ty
A(a.)e ' g.(b)
Filz) = —d Lk L+ 62),
- - j.. 'Y - \]. - . J . . - . \]
(bj aj) sinm 7 (z aj) (bJ aJ) sinmg, (z bJ) .

(j=1,2),

where the functions Gj(z) are bounded everywhere except possibly at the
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respective end points near which they may have a weaker singularity of
the form

A.
|Gj(Z)I< —___QE_ET; s (j=192) s
IZ‘Cjk| !
Cip = 85 5 €57 < Re(yj) » Cyp = bj s €49 < Re(ej) . (55)

In (55) k=1 and k=2 correspond to end points aj and bj, and Ajk and
€5k are positive constants.
From the Plemelj formula

bj
1 [ ¢5(s) T+ - :
L[ A e = 170047001 4 (571,2) (56)
23
and (54) it may be shown that
b.
j
$:(s) g.(a.)cotmy, g:(b.)cotng.
1f J7 ge = 23 i T ey,
T STX B3 S TN A PR B
aj (bj—aj) (X'aj) ( j-aj) ( j'x)

aj<X<bj ,‘(j=1,2) . (57)

In integral equations (34) and (35) there are also other "Cauchy-
type" integrals coming from the generalized Cauchy kernels kij(x,s).
From (43)-(50) and (52) it may be seen that all these integrals can be
expressed in terms of a Cauchy integral of the form

S-7 ds = Fj(ZO) » (3=1,2) (58)

where Z, is outside the corresponding branch cut and hence F

: j(z) is
. _ _ . S - . s2
holomorphic at 2=z (e.g., zo--x<(a1,0) in k]]’ zo—2h-x>(b],h) in k{7»

- . s _ . s M . .S
zo-Zh-x<(a2,h) in k22, zo-x<h<s in k]2 and zo—x>h>s in k21). From (58)
we also observe that
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b.

J J ¢
¢:(s) (s) 2
%'j (g—z yz 9s = dg Fi(zg) s %'J Zsiz y3 ds = %'dg 7 Fi(zo)-
a 0 o 9 a. 0 o- Y
J J (59)

Since the remaining kernels kij

closed intervals, with the density functions as defined by (53) the
corresponding integrals would also be bounded for all values of x. Thus,

are all bounded in their respective

in the asymptotic analysis they may be combined with the other bounded
terms Py and Ppe

The singular behavior of 97 and 9o May now be determined for any
location of the crack tips (i.e., for a;>0, by<h, a,>h) by substituting
from (53)-(59) into (34) and (35), and multiplying both sides of the
equations by (x- ay ) "3, or b.-x)Bj, and letting x»a;, x»b; for a,>0,
by<h, a,>h, and by x1, (h-)f1, (x-n)'2 and Tetting %00, xoh-0, x=h+0
for the Timiting crack tip locations a]=0, b]=h, a2=h. In the standard
case of cracks embedded into homogeneous materials, that is for a1>0,
b]<h a2>h k i as well as kf are bounded and the on]y contribution to
the s1ngu1ar1ty comes from the Cauchy kernels (s- x) in (34) and (35).
Thus, since gj(aj)#o, gj(bj)fo, from (57), (55), (53), (34) and (35) it
may easily be seen that

cotnyj = 0, cotvej = 03 Yj 1/2, Bs = 172 , (60)

leading to the standard results for the embedded cracks, namely

9 (x) |
¢:(x) = » (as<x<b;) , (3=1,2) . (61)
J Tx=a;JTb;-x] 3o

The characteristic equations for Y5 and g. corresponding to various

other special crack geometries may be obtainedey using the asymptotic
expressions given in this section and the related generalized Cauchy

kernels k?j(x,s). If, for example a]=0 (i.e., the case of an edge crack),
then following the procedure outlined above, substituting from (43),

(54), (57) (with a1=0) and (59) into (34), multiplying both sides by

=12~



¥
X ], letting x»0, and by observing that g1(0)#0, the characteristic

equation for Y1 is obtained to be

2
cosmyy - Z(Y]-'l) +1=0. (62)

The only acceptable root of (62) is y]=0, that is, as expected at x=0
the derivative of the crack surface displacement is found to be bounded.
If b]<h, a,>h, then the results found for Bys Y and 8, in (60) would,
of course, remain valid.

Consider now the case of a crack tip terminating at the interface.
Let, for example, b,=h, a,>0, a,>h. Clearly for the embedded crack
(a2,b2) (35) would again give Yp=8,=-1/2. Also, regardless of the loca-
tion of the crack tip x=b1, (34) would give y]=-1/2 for a1>0 and y1=0
for a]=0. Thus, to determine 8, (defined in (53) for b]=h) it is suffi-
cient to consider only the singular kernels (s-x)'1 and k?%(x,s) in
(34). By substituting from (57)-(59) (with b1=h, zo=2h-x) into (34) and
by separating the terms that are singular at x=b]=h, it may be shown
that

g, (h)cotns g, (h)

- t— 5 " 11 — [eqy #eqplhex) o

(h-a1) sintg,

"
(h‘a'l) (h-X)

1 2 g2 1 - .
* 5 Cya(h-x) 7] _—)—BT = H(x) , aj<x<h , (63)
(h=x

where H(x) represents all other terms in (34) that are bounded at x=h.
After carrying out the differentiation, if we multiply both sides in
(63) by (h-x)"V, let x+h and observe that g1(h)#0, we find

1 -
, COSTEy =5 Cy38y(By*1) = €198y = €7 =0, (64)
where the coefficients c]j are given by (45).
Similarly, for relative crack tip locations Oja]<b]<h = a2<b2 we

find
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1 )
CosTY, + 5 Coavp(vy*l) + Coovy + €yp = 0 (65)

with Cyy @S given by (51).

Finally, to examine the singular behavior of ¢ and 99 at x=h for
a crack crossing the interface we let 0<a,<b,=h=a,<b, and observe that
the end point x=h is common to both cracks. In (53) we must, therefore,
have

B'l = .Y2 = g, 0<Re(8)<], (b-|=h=a2) . (66)

In this case by separating the terms that are bounded at the common end
point x=h the integral equations (34) and (35) may be expressed as

h b

2
L e Ieg()as + 1 [ TS, 0sdepls)ds = wy(x)
a h
ay<x<h , (67)
h b,
L0 kS (x,8)01(s)ds +- | [=+KS.(x,8)]6,(s)ds = H,(x)
- 211 %s51%q - s—x | K2\ Xs8)1éy o\X)
a] h
h<x<b2 . (68)

where H] and H2 represent all other terms in (34) and (35) bounded at
x=h. By substituting now from (57) with by=h, a,=h, 8;=v,=8, and (54),
(58) and (59) with zo=2h-x and z,=x into (67) and (68) we obtain

-g](h)cotns g](h)
+

d , <13 2
[egyteyp(hn) g + =2 () bt

B
(hea) T(hx)”  (h-ap) Tsinme (h-x)
g,(h)
+ ( jBZ [d-lz(X-h) d—ci(-+ d-”]"(—h—l;')—s = H](X), a]<x<h, (69)
b,-h} “sinmnB
2
~g,(h) q 1 9p(h)cotrs -
[d,,(x-h) 9==-d,,] +
(h-a1)Y1sinw8 # P (xem® (b, _h)BZ (x-h)®
g,(h) c
r— B2 lepy-cpplx-h) g+ (x h)zdz] 5 = Hp(x), hexeh,.
(bp-h) “sinmg (70)

-14-



Multiplying (69) and (70) respectively by (h-x)B and (x-h)B and letting
x-+h, it may be shown that

g4(h)

:

[c1q%cq28 +5¢13(1#8)8-cosnB] z

(h—a]) sinmg
g,(h)

1179728) 5,
(b2-h) sinmg

+ (d

g7(h)

(dp1+dpp8) :
(h-a]) sinmg

g,(h)

Bp
(bz-h) sinmB

1 -
+ [c05nB+c21+Bc22+ §-s(s+1)c23] =0. (71a,b)

Since g](h) and gz(h) are nonzero, from (71) we obtain the following
characteristic equation to determine 8 and the relationship between 91(h)
and gz(h):

[cqqtcq 8 +—— ;3 B(1+8)-cosneIc,q*+C,08 + 5= 33 8(1+8)+cosmg]
'(d]]'d]zs)(dz] 228) =0, 0<Re(8)<1 s - (72)
A8 1
g;(h) (h-a7) " cpytcyoB +5 CpgB(1+8)+cosTR 73
2 w2 dpytdpo8 '
2

A close examination of the characteristic equations (64), (65) and (72)
would show that in each case the acceptable Teading root is real for all
material combinations.

It may be remarked that for a]>0 the solution of the integral equa-
tions (34) and (35) contain two arbitrary constants [10], [9]. In the
case of two non-intersecting embedded cracks (that may include b1=h or
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a2=h) the single-valuedness conditions (36) are used to determine these
constants. For a]=0, b1#a2, only (35) contains an arbitrary constant
which is determined from (36b). For the crack crossing the interface
(36) reduce to the following single condition which accounts for only
one of the constants:

h by
J ¢ (x)dx + J $o(x)dx = 0 . (74)
a; h
The additional condition needed to determine the second constant is pro-
vided by (73).

6. Stress Intensity Factors

Recalling that the left hand sides of equations (34) and (35) rep-
resent o1yy(x,0) and Iy (x,0) outside as well as inside the cracks,
from (34) and (35) we can write

b.
ey 107 845 s .
4“-] 01yy(xso) = ; J [;')Z' + k.lJ(XsS)]d)J(S)dS + M.I(X)s (1=192)

a.
J (75a,b)

where functions M1 and M2 correspond to the terms that are bounded at the
end points. If the cracks are embedded into the respective homogeneous
materials (i.e., if O<a]<b]<h<a2<b2), then the kernels k?j are bounded
for all values of x and s making also only bounded contributions to
oiyy(x,o). In this case we observe that for x outside the cracks the
Cauchy integrals in (75) may be expressed by (58) and (54), which, upon
separating the singular terms, and substituting into (74) give

Gy 9 lay)i 9, (by)
= [ - —L K i (01, (k=1,2) (76)
k }]bk-ak }/X"ak V/bk-ak VX'Bk

(x,0)

“kyy

where P] and P2 represent all the bounded terms on the left hand side
of (34) and (35). Defining now the mode I stress intensity factors by

-16-



k1(aj) = Tim J?laj-xj ojyy(x,o), (j=1,2) (77)

x+aj-0
ki(b.) = Tim  V2(x-b.) 0. . (x,0) ,(j=1,2) 78
13 Xob 40 3" "dyy ( (78)

from (75) it is seen that

4y,  g.(ay) gy, g.(by)
k(ay) = et =L, kq(by) = - gl L. (79)
"3 /b3y ’ "3 Abya;)/2

We now consider the crack terminating at the interface and let
Ofg], b1=h, h<a2<b2. Again, let the stress intensity factor at x=h be
defined in terms of the local cleavage stress, which in this case is

°2yy(x’0)’ x>h. Thus, analogous to (78) we may define

B
k(h) = Tim /2 (x-h) | opp (x,0) (80)
x-+h+0
On the other hand, keeping only the terms that may contribute to the
stress singularity and by substituting from (48), (75b) may be expressed
as

-d d,,(x=h)
L D e g, @

where Q](x) represent all the remaining terms that are bounded at x=h.
Since x is outside the cut (a],h), (58), (59) and (54) may be used in
(81) with z,=x, giving

T+k
T, TayyX:0) = =dyFy{x) + dyplich) £ F(x) + Qp(x) (82)
or
| by, g(h) 1
°2y_y(x’0) = -|+K2 7 (d2-|+d223-|) —"‘_‘a‘ + Qz(x) (83)
(h-a;) 'sinne, (x-h)
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where Q aga1n is bounded or, at most may have a singularity weaker(*)
than (x h) . From (83) it is seen that the cleavage stress oy has
a singularity at x=h with power 8y and from (80) and (83) it follows
that
4 v2 g4(h
ky(h) = 1122 i g]§1) (dpytdpz8y) (84)
(h-a]) sinmgy

where 8 is the acceptable leading root of (64), 91 is defined by (53),

d21 and d,, are given by (49), and y{=1/2 for a1>0 and v;=0 for a]=0.
Similarly, for the crack in material 2 and terminating at the inter-

face, i.e., for 0<a,<by<h, h=a,<b,, from the asymptotic examination of

o]yy(x,o), x<h we find
k (h) = Tim V2 (h=x) 2o (x,0)
. = m -X [¢) X,
1 x~>h-0 lyy
4y v2 g,(h)
_ 1 2
" TRy 8 (dyq-dy5vy) (85)

2 .
(bz-h) sinmy,

where v, is given by (65), dyq and d]2 by (47) and B,=1/2.

In the case of a crack crossing the interface the stresses as well
as the displacement derivatives would have a singularity at x=h of the
form r's, r being the radial distance from the point x=h, y=0 and B the
root of (72). In this problem of particular interest are the normal
and shear cleavage stresses o, and 9y along the bond 1ine x=h. The

XX
expressions for o, (h,y) and oy (h,y) may be obtained in terms of

2 and ¢ by going back to the ma1n formulation of the prob]em( *).

(*) This is due to the possible singular terms coming from G](z) that

appear in (54) and has the behavior as given by (55), and from the
fact that the characteristic equation (64) may have more than one
root satisfying O<Re(gy)<1.

(**) Note that, because of continuity we have °1xx(h’y)=°2xx(h’y)=°xx(h’Y)
and o]xy(h,y)=02xy(h,y)=cxy(h,¥).
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After somewhat lengthy analysis and upon separating the singular parts
of the kernels it can be shown that (see [7] for details)

k.
2 21 (s f
oxx(hs.Y) = ]+K2 % -TTJ [ksj(.VsS)+k3j(.YsS)]4>j(S)dS, (0<.Y) ’ (86)
%
b.
2“2 21 ’ s f
o) = 5o T L[ D) + k5,9 Teg()ds, (0) 5 (87)
a.
J

where b] 9= =h, the kernels k 5 (i=3,4; j=1,2) are of the Fredholm type
and the genera11zed Cauchy kerne]s kS ij° (i=3,4; j=1,2) are given in Appen-
dix B. (86) and (87) only k 5 contribute to the stress singularity
at (y=0, X= h) The singular terms in (86) and (87) may be evaluated by

using again (58), (59) and (54). For example, by substituting from

gq(s)
1(s) = ! 5 (a<s<h) (88)

Y7
(s-a;) "(h-s)

into (86), using the equations (B1), (54) and (58), the first term in
(86) may be obtained as

h é4(s)ds h
l ] = ll ( 1 ) (S)ds
w (h-s)%+yZ " 2 7 h-s+1y h- s -1y *
g,(h) )

P ALY (89)
Z(h-a]) sin >
where R represents the terms that are bounded at (y=0, x=h). It is then
clear that the Teading terms in the asymptotic expressions for oxx(h,y)
and cxy(h,y) will be of the form y‘B, where g8 is the root of (72). We
may now define the following stress intensity factors to characterize the
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stress singularity at (y=0, x=h):

= 1im y®s_ (h,y), = 1im B ) . ,
Ko y+Toyoxx( y) kxy ;lToyoxy(h y) (90a,b)

By using the results of the form (89), from (86), (87) and (88) it may
then be shown that

. A+(1-28)B B+(1-28)A
“ux (T4k,)sin 2 [ Y1 91(h) B Bo gz(h)] i (91)
27 2 (h-a]) (bz-a)
" =-\I- -{ =
kxy = o )2 = [A (1 283? g_l(h) + B_(_LZ_S)B_;\ gZ(h)] (92)
K2 cos ) (h_a]) (bz-h)
m(1+’<2) m(»<2+1)
A= _EEEIT—', B = m+K] s M = U]/Uz ’ (93)

where 82=1/2, y]=1/2 for a]>0 and y1=0 for a]=0.

Two stress intensity factors defined by (90) at the same point is
sitmply for convenience. As one might expect and as seen from (73), (91)
and (92), g](h) and gz(h) are not independent and there is only one
parameter characterizing the stress singularity. If (r,8) are the polar
coordinates with the origin at the point (x=h, y=0), for small values
of r the stresses may be expressed as

-

k
0 .
Oij(r’e) = ;E fij(e) s (1sJ'x9y) ’ Ofﬁfﬁ (94)
Thus, from (90) and (94) it follows that

kXX = kofxx(n/Z) s kxy = kofxy(n/Z) . (95)
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7. On the Solution of the Integral Equations

For numerical solution the integral equations (34) and (35) are
first normalized to read

[ T+c.
1 —iJ - 1 .
;f Lo *+ my3(rse)Jos(o)do = W q;(r) » -T<r<, (i=1,2) (96)
-1
where » bi+ai 5 bi+ai
F= b.-a. (x - 2 )s o “b.-a. (s- ) ) qi(r) = pi(X)a
i % i
bs-a, fj(p)

(97)

mij(r’p) = 7 kij(xss)s wj(p)=¢j(s) = Yj Bj
(1+p) Y(1-p)

The unknown functions f1 and f2 are real and bounded and may be determined
by using any one of the techniques available for solving singular integral
equations [9]. In this paper it is assumed that

N5

- n s
fj(p) = g Ajnp s =1<p<1 , (J']az) . (98)
The unknown coefficients are then determined by using the special formu-
las and the procedure developed in [11] and [12] for various crack con-

figurestions.

8. Results and Discussion

As examples for the thermal shock problem described in the previous
sections we consider two material combinations. Material pair A cor-
responds to a stainless steel layer welded on a much thicker ferritic
steel medium approximating cladded pressure vessels of very large dia-
meters. Material pair B represents a ceramic layer (Material 1) bonded
to a thick steel substrate (Material 2). The properties of the two
material combinations are given in Table 1. Since the problem is for-
mulated in terms of dimensionless quantities, it is sufficient to con-
sider only the ratios shown in the table.
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Table 1. Properties of material pairs used in examples

! ]
3 3 0.75 1 1
3.385 4.070 2.2939 0.6111 1

Material pair A
Material pair B

Figures 2 and 3 show some sample results for the normalized stresses
GIyy/Go defined by (19) and (20) inthe material pair A. Note that these
are essentially the plots of normalized temperatures (see equations (16)-
(20)). Comparison of the two figures clearly shows the influence of
ramp cooling on the transient thermal stresses, particularly for small
values of time(*). Stress intensity factors for various crack geometries
in the material pair A are shown in Figures 4-16 (see Fig. 1 for nota-

tion). In Figures 4-16 all stress intensity factors are normalized with

respect to
E-IOL]GO
o = 99" 5 05 = = T (99)

where £ is the total crack length for an edge crack (i.e., £=b1 for a1=0,
b]<h, and £=b2 for a1=0, b1=h=a2) and the half crack Tength for an inter-
nal crack. The parameter To defined by

r, = t,Dy/h2 - (100)

is the measure of the rate of change of surface temperature during ther-
mal shock, to being the actual duration of the ramp (see (6a) and Fig.
1b).

Figure 4 shows the variation of the normalized stress intensity
factor k1(b1)/coJ51 for an edge crack and for 7 =0 with the Fourier

(1 In the materials used for a clad thickness h=6 mm. t310, t and «
being the real and normalized times (in units of seconds) (see

(18)).
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number r=tD1/h2 representing the normalized time. Note that in the
material pair A E]=E2 and V1TVse Consequently as 1+ k]/ko would
approach the uniformly loaded half plane solution of 1.1215 (see, for
example [11]). This asymptotic trend may be seen in Fig. 4. For a
fixed crack length b]=0.5h the influence of the cooling rate on the
surface x=0 as measured by To is shown in Fig. 5. It is seen that for
small values of time this influence could be quite considerable.

The stress intensity factor given in Fig. 4 as well as that given
in all subsequent figures are presented in normalized form and the nor-
malizing stress intensity, ko always contains a length parameter (as,
for example, in k0=co/5T for the case shown in Fig. 4, b] being the crack
length). Thus, in considering questions relating to fracture propaga-
tion and fracture instability, the normalized stress intensities must
be multiplied by k0 before they are compared with the fracture tough-
ness, KIC or used in a subcritical crack growth model. One consequence
of this in connection with the example described in Fig. 4 is that
k1(b1) is a monotonously increasing function of both crack length and
time implying an unstable fracture process.

For an edge crack crossing the interface the results similar to
Figures 4 and 5 are shown in Figures 6 and 7. For each crack length
the figures also show the asymptotic values of the stress intensity
factor as 1. The stress intensity factors k1(a2) and k](bz) for an
under-clad crack are shown in Figures 8-11. Again, the figures also
show the asymptotic values of k] as 1>, One may hote that in material
pair A, despite the large differences in thermal coefficients o, D and
k', the elastic constants E and v for the two materials are the same.
Consequently, for a crack terminating at the interface we have y2=1/2
(Figures 8-11), B1=1/2 (Fig. 12) and for a crack crossing the interface
g=0 (Figures 6,7,13-16). Figure ‘12 shows the stress intensity factor
for an edge crack terminating at the interface (b]=h). Figures 13-16
show the results for material pair A containing an internal crack cross-
ing the interface (0<a]<b1=h=a2<b2<m). Figures 13 and 14 show the
influence of ramp duration T, ON the stress intensity factors for a
fixed crack geometry, a]=0.2h, bz=2h. Figures 15 and 16 gives the stress
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intensity factors for an under-clad crack growing into the clad. The
figures also show the asymptotic values of the stress intensity factors
for toe,

The results for the material pair B are given in Figures 17-25.
Figures 17 and 18 show some sample results for the transient thermal
stresses o1yy(x,t) and c;yy(x,t) obtained for =0 and 7, =60. Again,
from (16) and (17) it follows that these are essentially the temperature
distributions in the composite medium. For these materials the stress
discontinuity at the interface is given by (see (19) and (20))

.
oo, (hat)  Eja,(1-vq)
2uy - EZGZ(]_v1) = 1.4019 (101)
oryy(hat)  F191ITV2

Figures 19 and 20 show the normalized stress intensity factor for
an edge crack in material 1. The limiting case for the edge crack ter-
minating at the interface is shown in Fig. 21. In this case for the
material combination under consideration (64) gives the power of singu-
larity as 8]=0.552538. The normalizing stress intensity factor used in
Fig. 21 is defined by

By

k0 = o1h (102)

The results for an edge crack going through the interface (i.e.,
a]=0, b]=h=a2<bz<w, Fig. 1) are shown in Figures 22-25. Figure 22 shows
the effect of the ramp duration Ty ON the crack tip stress intensity
factor k1(bz) for a fixed crack length b2=2h. The influence of the
crack Tength b2 on k](bz) is shown in Fig. 23. Finally, Figures 24 and
25 show the stress intensity factors kxx and kxy governing tensile and
shear cleavage stresses at interface, (x=h, y>0).
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APPENDIX A

The functions Gij(x,s,a) appearing in equation (37)

= K2+3 H3 aX |<.|+3 7o —ax
= ['H]'(—z— + OLX) T e + [Hs_( 5 - G,X) _5_ e ,

kytl kq+3 H, e 43 Wy
) K;+7 ([ (= + ) 5™ + =B - ax) 21y,
_ Kot kp+3 cox
- K-l""'] [HQ'(_Q_ - ux)H.”]e »

Kn=3

= [H.]O—(__ZZ_ - ax)H]z]e o X :

%{(T-Zat)e-ut + (H7'K]H3)%J ,

'2‘15 (H8-K1H4) .

d2d3[1+2uh(2ut-1)]e-a(t+2h)_d]d3e'a(t+4h)

~dyd[1+20(t-h)1e*(E-2)eq d (14208) e E4N)

d2d5e“at;{d]d5+2d3dsuh[]_Za(t_h)]}e-a(t+2h) ’
%{e-at - %(H3'K]H7)] ’

?lD— (K" H8"H4) N
dpdy(1-2at)e™ - d,d [1-20(t-h)Je™(E+20)

+«{2d2d3uh[1+2a(t_h)_d]d4}ea(t-2a)+d1d3ea(t-4h) ,
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. -at
{d4d5['|-Za(t-h)-Zdzdsah}e

- dyd [1-2a(t-h)Je(420)

d !
T+, 6 200
g = 7l(xp=20h]Hyq - Dd, 3 ",

d d
.l Lad - R
= ?[(KZ-Z(xh)H.lz __b H eZuh - 2 e alt Zh)] ,

10 Dd; 4 4

d

% oty 1

n°q, (e" + 5 Hy) s

dy —al(t-2n) . %
12" a;—[]-Za(t-h)]e + HEE-HB , (A5-A16)
- —d2d4+[d]d4+d2d3(1+4h2a2)]e'2ah-d]d3e'4“h , (A17)
-I = sz—K], d2 = mK2+], d3 = m'], d4 = m+K], ds = K'2+-I °
6 = m(K1+])9 m = U]/UZ . (A]8)
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APPENDIX B

The generalized Cauchy kernels that appear in equations (86) and (87).

s _  B(s-h A(s-h)[3y2-(s-h)2

k32(¥>s) = Toohyzey” * TTs-hiZey ’ (82)
s - 2-3(h-s)?

kg (y>s) = h-5) 2ty (83)

2 2
Ga25) = s * g - (84)

m(K2+1) m(r<2+1)

A - 9 B =
mK2+ m+|<'l

s M= U]/Uz (85)
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APPENDIX C
List of Symbols

Crack tip locations, T=1,é

Specific heat, i=1,2

Coefficient of thermal diffusivity, i=1,2
Modulus of elasticity, i=1,2

Thickness of the layer

Stress intensity factors at the crack tips, i=1,2
Normalizing stress intensity factor
Coefficient of heat conduction, i=1,2

time

Ramp duration

Surface temperature for t>t0

Initial temperature

Temperature, i=1,2

Components of the displacement vector, i=1,2
Rectangular coordinates

Coefficient of thermal expansion, i=1,2
Poisson's ratio, i=1,2

Elastic constants, u=E/2(1+v), «=3-4v (plane strain)
Mass density

Normalizing stress, co=-E]a1so/(1-v])

Stress components, (i,j)=(x,y)

Temperature, 61=T1'Tw’ i=1,2; eo=T0-Tw
Normalized time (Fourier Number), T=D]t/h2

i = 2
Ramp duration, To D1t0/h
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Fig, 1 The crack geometry and the temperature boundary condition
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